
UCCPS Beginner Workshop
2022 Season
Episode I: Introduction & Basics of Dynamic Programming

What is competitive programming?

- Not just programming competitively
- Combination of problem solving and elegant implementation
- Learn algorithms & data structures
- Improve skills for coding interviews, too!

How do you do competitive programming?

- Usually have a contest system (online judge)
- Today in the practical part we'll use Kattis

- The system/judge:
- Shows you a problem statement, specifying the input & output
- Allows you to submit a program
- Judges your program and gives you a verdict

- AC (accepted), WA (wrong answer), TLE (time limit), MLE, RE, …

CP Problem morphology

Name (sometimes a letter)

Description (story, problem, …)

Input/output specification
Limits (sometimes separate)

Samples
(to check your understanding)

Judging solutions

- The main two metrics tested are:
- Correctness

- Some amount of programmed test cases
- Often tests are hidden - only samples are known

- Efficiency
- Time
- Memory

Comparing solutions

- Sometimes, a problem may have more than one solution
- The simplest, slow one ("by definition") is often called brute force.

- In that case, often we are interested in the best efficiency - time to execute
- How can we sensibly compare algorithms?

- Most commonly computer scientists compare algorithms by
computational complexity

- Ignores constant factors
- Usually considers the worst case (also: best case, average case)
- We make some simplifications

- Elementary operations take some 1 unit of time (arithmetic, logic, etc.)

- We care about the problem size on input
- For example, we may have a an array of size k or a number N (well, akshually…) on input
- Ignore how many bytes e.g. each array element is - that's a constant

Comparing algorithms - complexity analysis

Quick introduction to Big O

- We'll use the Big O notation to simplify an algorithms' time complexity
- If we take exactly 2n³ + 3n² + 17 units of time, we just write O(n³)

- Most significant term without constant factor
- More formally: a function that bounds the time as n → ∞ with some constant

- Rule of thumb - 10^7 elementary operations could be about a second.
- Subject to what we take to be an elementary operation
- This relates to the hidden constant factor of some algorithms

- Better complexity != quicker on your data

Example Big O's

We loop & add n times ⇒ O(n)

n times we loop & add k times ⇒ O(nk)

n times we loop 5 times, then at most 5 times
⇒ O(n * 5 * 5) = O(n), as we drop the constants

Dynamic programming

Let's look at prefix sums first

- We'll start with looking how one might compute prefix sums
- Prefix sums are a really useful concept for plenty of practical problems

- Come up when
- We are dealing with changes over a time period
- More abstractly, we have range sum queries on an array

Prefix sums on an example

1 0 2 3 1

Money earnt per day

Money earnt until day

1 1 3 6 7

- Say you earn some amount of money on each day of your software engineer internship.

- How could you quickly tell how much you earnt until the i-th day?

+

- We sum over all money earnt until the i-th day.

sums[i] = day[0] + day[1] + ... + day[i] # O(n²) for all

- However, there's a repeating substructure
- The earnings until the i-th day start with the earnings until the i - 1-st

sums[i] = sums[i - 1] + day[i] # O(n) for all

Computing prefix sums

Side note - range sum queries

- With prefix sums, we can answer prefix sum queries.
- The money earnt between day i and j is:

day[i] + day[i+1] + … + day[j] = sum[j] - sum[i - 1]

- This makes prefix sums quite useful as an auxiliary structure.

Dynamic programming is
about repeating subproblems.

The example problem from our stall @ Fresher's fair 2022!

- Formally, find the maximum sum non-adjacent subsequence
- The sequence is the list of cash amounts in each following box

- Brute force - consider all subsequences – O(2^n)
- Check if they have no adjacent boxes – O(n)
- Sum up the present values – O(n)

- That has O(n 2^n) complexity.
- We can do much better.
- And without any heuristics like tree search or greedily taking some boxes.

The box problem

Solving the box problem

- The optimal solution is some subsequence of a
- Consider the following two cases:

- 0. The last element of a isn't in the optimal solution
- Throw it out and solve the problem without it.

- 1. The last element of a is in the optimal solution
- We can't use the second element in this case
- Throw both out and solve the problem

a = [10, 1, 2, 9, 15, 9]

a0 = [10, 1, 2, 9, 15]

+ £9, a1 = [10, 1, 2, 9]

- We've shown that solving the box problem for n boxes can be reduced
- We need to know the solutions for n - 1 and n - 2 boxes

- We call the subproblems the states, and the reductions transitions
- States - prefix (some first k boxes)
- Transitions - for some state k, we either

- take the last element of the prefix (go to k - 2)
- or we don't (k - 1)

What have we just done?

Writing down the solution

Say opt[n] is the optimal solution for the first n boxes.

Of the two possible transitions we pick the higher result.

opt[n] = max(
 opt[n - 1], # don't take last
 opt[n - 2] + box[n - 1] # take last
)

Leveraging repeated substructure

- We only gave recursive equations to compute the result opt[n]
- However, dynamic programming leverages repeated subproblems
- We cannot solve a subproblem multiple times, as then we just consider all

cases (all subsequences) like in brute-force

def opt(n):
return max(opt(n - 1), opt(n - 2) + box[n - 1]) if n else 0

Memoization

- The way to use repeated subproblems is memoization of the results
- Basically, whenever we solve a subproblem we save the result

- ⇒ each subproblem may only be solved once

- Often, dynamic programming is implemented as for-loops filling an array.
- Sometimes, for tricky states and transitions, it's convenient to use recursion.

opt[0] = 0
for i in range(1, n+1):

opt[i] = max(opt[i - 1], opt[i - 2] + box[i - 1])

- We've solved the box problem in O(n) – linear – time, in comparison to the
O(n 2^n) of the brute force approach.

- For a million boxes this is the difference between a fraction of a second and finishing way
past the lifetime of the universe.

- Sometimes we need such huge datasets
- A naive Longest Common Subsequence algorithm could take months/years when working

on a genetics dataset
- Heuristic algorithms can do this way faster (though they man not be optimal or they only

behave well on some data)

Efficiency of dynamic programming

The dynamic programming approach

1. Pick your states and transitions.
2. Find the base cases (when do transitions fail? where do you start?)
3. Extract the result from the final state (representing the entire problem)
4. (Usually) order the states to loop through them and compute their results.

Pyramid problem

You're in a pyramid filled with gold coins. Starting
at the base (in any room) you want to get to the
very top, collecting coins in the rooms you pass.

You can only proceed to the two rooms above you
(not sideways or downstairs).

How many coins can you collect?

Brute forcing the pyramid

- Once again, there's a simple brute force approach
- For n floors of the pyramid, we have O(2^n) paths we process in O(n).
- But… there's plenty of repeating subproblems!

Optimal paths to follow in the pyramid

Pyramid problem solution

- States
- (i, j) for the optimal solution starting in

row i and column j
- Transitions

- From (i, j) we go up to the left or the right
- We add the coins in the current position

- Base case
- Sometimes no left/right room
- The top has no rooms to proceed to

- Ordering
- e.g. bottom to top, then left to right

Let's get coding!
- Check out the Discord for a workshop 'contest' link
- Solve through the problems (probably best in order)
- Whenever you get stuck - make sure to ask us for help! (raise your hand,

come up, etc.). This is the best way to get the most out of the workshop!
- We'll get pizza at the end ;-)

